Simulating an IID Sequence from an Arbitrary Distribution

> Brian Hunt and David Levermore University of Maryland AMSC/MATH 420, Spring 2014

> > ◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Pseudo-Random Number Generators

- Many algorithms have been developed to simulate random IID sequences (though nothing a computer does is truly random).
- These algorithms usually generate numbers that are uniformly distributed, typically between 0 and 1.
- Most mathematical/statistical software systems have a built-in routine to convert the uniformly distributed pseudorandom numbers into normally distributed numbers with mean 0 and variance 1.
- In MATLAB, the commands rand and randn generate pseudoranom numbers that are uniformly and normally distributed, respectively.

Arbitrary Probability Distributions

- Suppose you want do simulate an IID sequence of real numbers with a different (but still continuous) distribution, whose probability density function ("pdf") is q(X).
- The simplest algorithm to do so involves the corresponding cumulative distribution function ("cdf")

$$Q(X)=\int_{-\infty}^X q(x)dx.$$

Recall that the meaning of the pdf is that ∫_a^b q(x)dx is the probability that the random variable X is between a and b. Also, Q is nondecreasing with Q(-∞) = 0 and Q(∞) = 1.

Key Observation

- Since Q(x) is the probability that a randomly chosen X is ≤ x, the values of Q(X) are uniformly distributed between 0 and 1. Here's why:
- The probability that X is between a and b is Q(b) Q(a), so the probability that Q(X) is between Q(a) and Q(b) is also Q(b) Q(a).
- Since Q(a) and Q(b) can take on all values between 0 and 1, Q(X) is a random variable whose probability of being between c and d is d - c for all 0 < c < d < 1. This is the standard uniform random variable.

The Punch Line (and Algorithm)

- Therefore, if *Y* is a random variable that is uniformly distributed between 0 and 1, then $Q^{-1}(Y)$ is distributed according to the desired distribution with pdf *q*.
- Algorithm: Use rand or the corresponding pseudorandom number generator for your software system to simulate a uniform IID sequence of real numbers, and apply Q⁻¹ to each of these numbers to simulate an IID sequence with pdf q.
- For some pdfs q, one can find a formula for Q⁻¹.
 Otherwise, one needs to compute enough values of Q in order to reasonably approximate Q⁻¹.

Example: Exponential Distribution

- The exponential distribution with mean β has pdf $q(x) = \exp(-x/\beta)/\beta$ for $x \ge 0$ and q(x) = 0 for x < 0.
- The corresponding cdf is $Q(x) = 1 \exp(-x/\beta)$ for $x \ge 0$ and Q(x) = 0 for x < 0.
- Then $Q^{-1}(y) = -\beta \log(1 y)$ for 0 < y < 1.
- If Y is uniformly distributed then so is 1 Y; thus, the logarithms of uniformly distributed numbers are exponentially distributed.

(日) (日) (日) (日) (日) (日) (日)