Optimizing over Interventions within a Budget

Brian Hunt
University of Maryland
AMSC/MATH 420, Spring 2014

Budget Constraint

- Recall our 2-group SI model with type a and b interventions:

$$
\begin{aligned}
& d S_{1} / d t=-p_{11} S_{1} \mathcal{I}_{1}-p_{12} S_{1} \mathcal{I}_{2}-a_{1} S_{1} \\
& d \mathcal{I}_{1} / d t=p_{11} S_{1} \mathcal{I}_{1}+p_{12} S_{1} \mathcal{I}_{2}-\left(a_{1}+b_{1}\right) \mathcal{I}_{1} \\
& d S_{2} / d t=-p_{21} S_{2} \mathcal{I}_{1}-p_{22} S_{2} \mathcal{I}_{2}-a_{2} S_{2} \\
& d \mathcal{I}_{2} / d t=p_{21} S_{2} \mathcal{I}_{1}+p_{22} S_{1} \mathcal{I}_{2}-\left(a_{2}+b_{2}\right) \mathcal{I}_{2}
\end{aligned}
$$

- The impact $M\left(a_{1}, a_{2}, b_{1}, b_{2}\right)$ (fraction of the inital at-risk population saved from infection by the intervention) is an increasing function of each parameter $a_{1}, a_{2}, b_{1}, b_{2}$.
- We now consider the problem of maximizing M subject to a "budget" constraint $K\left(a_{1}, a_{2}, b_{1}, b_{2}\right) \leq K_{\max }$ where $K\left(a_{1}, a_{2}, b_{1}, b_{2}\right)$ is the cost of achieving parameters $a_{1}, a_{2}, b_{1}, b_{2}$.

Linear Budget Functions

- The simplest class of cost functions are linear functions
$K\left(a_{1}, a_{2}, b_{1}, b_{2}\right)=c_{a 1} a_{1}+c_{a 2} a_{2}+c_{b 1} b_{1}+c_{b 2} b_{2}$ where the c 's are positive constants representing "marginal" costs.
- To simplify further, let's assume $c_{a 1}=c_{a 2}$ and $c_{b 1}=c_{b 2}$ and let $c=c_{a 1} / c_{b 1}=c_{a 2} / c_{b 2}$.
- Let's normalize (choose units of cost) so that $c_{b 1}=c_{b 2}=1$, and call the resulting cost function K_{c}.
- The main flaw in a linear cost function is that it doesn't have the "diminishing returns" observed in real life.

Constrained Optimization

- We are considering a constrained optimization problem; in addition to the constraint $K_{c}\left(a_{1}, a_{2}, b_{1}, b_{2}\right) \leq K_{\max }$ we have $a_{1}, a_{2}, b_{1}, b_{2} \geq 0$. These inequalities describe a 4-dimensional simplex over which we want to maximize the impact M.
- Since M is an increasing function of the parameters a_{1}, a_{2}, b_{1}, and b_{2}, the maximum impact will occur when the entire budget is used:
$K_{c}\left(a_{1}, a_{2}, b_{1}, b_{2}\right)=K_{\text {max }}$. This equality allows one parameter to be determined from the other three, reducing the domain to a 3 -dimensional simplex - a tetrahedron.
- The maximum of M often occurs when one or more of the parameters is zero, meaning that the maximum occurs on one of the faces, edges, or vertices of the tetrahedron.

Optimization Strategy

- Iterative, "guess-and-perturb" optimization algorithms are problematic for constrained optimization because the allowed perturbations depend on whether one is inside the constriant domain or on its boundary, and where on the boundary.
- A simpler approach, feasible with a few parameters, is to search the entire domain to a certain resolution - choose a closely-spaced grid and search over the grid points in the domain.
- To distinguish between the boundary and the interior of the domain, you need to sample all parts of the boundary. For the tetrahedron described on the previous slide, a rectangular grid will sample the faces and edges that are aligned with the coordinate axes, but you may need to choose additional points to sample the diagonal face and edges.

