Optimizing over Interventions within a Budget

Brian Hunt
University of Maryland
AMSC/MATH 420, Spring 2014

Budget Constraint

Recall our 2-group SI model with type a and b interventions:

$$dS_1/dt = -p_{11}S_1\mathcal{I}_1 - p_{12}S_1\mathcal{I}_2 - a_1S_1$$

 $d\mathcal{I}_1/dt = p_{11}S_1\mathcal{I}_1 + p_{12}S_1\mathcal{I}_2 - (a_1 + b_1)\mathcal{I}_1$
 $dS_2/dt = -p_{21}S_2\mathcal{I}_1 - p_{22}S_2\mathcal{I}_2 - a_2S_2$
 $d\mathcal{I}_2/dt = p_{21}S_2\mathcal{I}_1 + p_{22}S_1\mathcal{I}_2 - (a_2 + b_2)\mathcal{I}_2.$

- The impact $M(a_1, a_2, b_1, b_2)$ (fraction of the inital at-risk population saved from infection by the intervention) is an increasing function of each parameter a_1, a_2, b_1, b_2 .
- We now consider the problem of maximizing M subject to a "budget" constraint $K(a_1, a_2, b_1, b_2) \leq K_{\max}$ where $K(a_1, a_2, b_1, b_2)$ is the cost of achieving parameters a_1, a_2, b_1, b_2 .

Linear Budget Functions

- The simplest class of cost functions are linear functions $K(a_1, a_2, b_1, b_2) = c_{a1}a_1 + c_{a2}a_2 + c_{b1}b_1 + c_{b2}b_2$ where the c's are positive constants representing "marginal" costs.
- To simplify further, let's assume $c_{a1}=c_{a2}$ and $c_{b1}=c_{b2}$ and let $c=c_{a1}/c_{b1}=c_{a2}/c_{b2}$.
- Let's normalize (choose units of cost) so that $c_{b1} = c_{b2} = 1$, and call the resulting cost function K_c .
- The main flaw in a linear cost function is that it doesn't have the "diminishing returns" observed in real life.

Constrained Optimization

- We are considering a constrained optimization problem; in addition to the constraint $K_c(a_1, a_2, b_1, b_2) \leq K_{\text{max}}$ we have $a_1, a_2, b_1, b_2 \geq 0$. These inequalities describe a 4-dimensional simplex over which we want to maximize the impact M.
- Since M is an increasing function of the parameters a₁, a₂, b₁, and b₂, the maximum impact will occur when the entire budget is used:
 K_c(a₁, a₂, b₁, b₂) = K_{max}. This equality allows one parameter to be determined from the other three, reducing the domain to a 3-dimensional simplex a tetrahedron.
- The maximum of M often occurs when one or more of the parameters is zero, meaning that the maximum occurs on one of the faces, edges, or vertices of the tetrahedron.

Optimization Strategy

- Iterative, "guess-and-perturb" optimization algorithms are problematic for constrained optimization because the allowed perturbations depend on whether one is inside the constriant domain or on its boundary, and where on the boundary.
- A simpler approach, feasible with a few parameters, is to search the entire domain to a certain resolution

 choose a closely-spaced grid and search over the grid points in the domain.
- To distinguish between the boundary and the interior of the domain, you need to sample all parts of the boundary. For the tetrahedron described on the previous slide, a rectangular grid will sample the faces and edges that are aligned with the coordinate axes, but you may need to choose additional points to sample the diagonal face and edges.