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More Sophisticated Models

Let’s re-examine the assumptions behind our first
models and discuss how to make them more realistic.

We assumed a fixed population size N that was
isolated from other sources of the hypothetical iliness
we modeled.

We assumed that a single number p represents the
probability of an infectious person infecting a
susceptible person on each day, for each such pair of
people.

A more realistic model would allow p to depend on a
number of factors.



Modeling the Infection Probability p

In real life, the infection probability p depends on the
pair of people. However, introducing an independent
probability p.,, for each pair of people m and n results
in way too many parameters.

Also, p depends on time; for example, day of week.

Perhaps most importantly, p depends on how long
the infectious person has had the illness. Typically it
peaks a certain amount of time after infection, then
decreases to 0.

To keep the number of parameters manageable, we
need to have a model for how p depends on these
factors.



Compartmental Models

Many models divide the population into a relatively
small number of categories (“compartments”) and
keep track of the number of people in each
compartment.

Our first deterministic models had two compartments:
“susceptible” and “infectuous”. We’'ll call the
continuous time model (3) the SI model.

A widely studied model is the SIR model, which
introduces a third compartment: “recovered”. People
in this category are no longer infectious.

Other possible compartments can take into account
more stages in the progression of the illness, different
behavior patterns, different biological characteristics,
etc.



Fitting to Data, Revisited

e In our earlier discussion, we assumed that the
number of infectious people at a given time could be
measured. But how would we ever know this
number?

e The number of infectious people is often inferred from
data on new diagnoses of the illness. However:

¢ Not all people who get the illness see a doctor.

» Diagnosis may come well after a person
becomes infectious.

o Data is not always reported (e.g., to CDC)
promptly or reliably.

e A common problem in modeling is to relate the
guantities of interest to the available data.



S| Model

The SI model we discussed before is often written

dS/dt = —pSZ

dZ/dt = pSZ
where S is the “susceptible” population — those at risk
to become infected at a given time — and 7 is the
infectious population. For this model the sum S + 7
remains constant over time; we called the sum N and
substituted S = N — 7 in the second equation.

The resulting solution was
NZ(0)
I pu—
= Zoy 7N - Z(o)e ™




SIR Model

The SIR model (Kermack & McKendrick, 1927) is

dS/dt = —pSZ
dZ/dt =pSZ —rZ
dR/dt =rZ

where R (for “recovered” or “removed”) is the number
of people who were infected but are no longer
infectuous. In this case, 7 + R is the cumulative
number of people infected.

One can add a term to the first equation representing
new arrivals to the susceptible population.

There is no formula for the solutions.



Properties of Solution Families

Each model’s family of solutions has some properties
that are useful for fitting parameters to data.

A time-shifted solution is also a solution: If Z(t) is a
solution, then Z(t + c) is also a solution (with a
different initial condition). This is because the model
is “autonomous” — no explicit t dependence.

A rescaled solution is also a solution: If Z(t) is a
solution, then aZ(bt) is a solution of the same model
with different parameters.

Given a data set and the graph of a solution Z(t), we
can try to shift and rescale the graph to fit the data.



Change of parameters for SI model solution

e We can rewrite

N
IO = T N z(0) = e
N
T 1ie 0 Ng(A(t —9))
where
A =PpN

5 = log[N /Z(0) — 1]/A
g(x) = 1/(1+e ™).



Interpretation of new parameters

If we find parameters N, \, 0 that fit the data, we can
solve for the original parameters p and Z(0).
However, the new parameters may be more
interesting in their own right.

N is the total number of people who will be infected
over the outbreak, according to the model.

J is the time at which N /2 people have been infected,
and at which dZ/dt peaks; it is more relevant than
Z(0) to the data and to the intepretation of the model.

A is the rate at which the outbreak unfolds; it
represents the rate per unit time a single person is
infecting others early in the outbreak.



Data Fitting Problems

e Given data points [t, Z;|, where Z; is an estimate of
the cumulative number of people infected at time t;,
we can try to minimize the sum of squared residuals

7(N, ), 0) Z[z Ng(A(t — 9))]%.
e If the data is [t;, ;] Where ti =] andy; is the number

of new diagnoses per unit time, then we can fit dZ /dt
to the data by minimizing

y(N, A, 6) Ziyi NAG'(A(t — 8))]%.



Partial Solution

We have posed nonlinear least squares problems.

Numerical methods for optimization can yield
approximate minimizers N, A, ¢.

We can make some progress algebraically, since E is
a quadratic function of N. Minimizing E, over N yields

Nas = Y Ta(\t = 9)) / D gAY -
=1 =1

Substituting and simplifying yields

2(Nos, A, 6) = ZIZ NA&ZIQ



Simple Approaches to Minimizing E

e Fix one parameter (say ¢) and compute E(N, s, A, 9)
for various ); look for the value of \ that minimizes E
for the chosen value of §. Then fix A\ and adjust o to
make E as small as you can. Then go back and see
if you can make E smaller by adjusting ), etc.

e Make a contour plot of E(N, s, A, §) over a range of
plausible \ and ¢ values. Zoom in near the apparent
minimum and make another contour plot, etc.

e These approaches can be automated, and of course
there are more sophisticated approaches; the latter
become important when there are more parameters
and/or when the function to be minimized takes a
very long time to compute.



