SIR Model and Nonlinear Least Squares

Brian Hunt
University of Maryland
AMSC/MATH 420, Spring 2014

More Sophisticated Models

- Let's re-examine the assumptions behind our first models and discuss how to make them more realistic.
- We assumed a fixed population size N that was isolated from other sources of the hypothetical illness we modeled.
- We assumed that a single number p represents the probability of an infectious person infecting a susceptible person on each day, for each such pair of people.
- A more realistic model would allow p to depend on a number of factors.

Modeling the Infection Probability p

- In real life, the infection probability p depends on the pair of people. However, introducing an independent probability $p_{m n}$ for each pair of people m and n results in way too many parameters.
- Also, p depends on time; for example, day of week.
- Perhaps most importantly, p depends on how long the infectious person has had the illness. Typically it peaks a certain amount of time after infection, then decreases to 0 .
- To keep the number of parameters manageable, we need to have a model for how p depends on these factors.

Compartmental Models

- Many models divide the population into a relatively small number of categories ("compartments") and keep track of the number of people in each compartment.
- Our first deterministic models had two compartments: "susceptible" and "infectuous". We'll call the continuous time model (3) the SI model.
- A widely studied model is the SIR model, which introduces a third compartment: "recovered". People in this category are no longer infectious.
- Other possible compartments can take into account more stages in the progression of the illness, different behavior patterns, different biological characteristics, etc.

Fitting to Data, Revisited

- In our earlier discussion, we assumed that the number of infectious people at a given time could be measured. But how would we ever know this number?
- The number of infectious people is often inferred from data on new diagnoses of the illness. However:
- Not all people who get the illness see a doctor.
- Diagnosis may come well after a person becomes infectious.
- Data is not always reported (e.g., to CDC) promptly or reliably.
- A common problem in modeling is to relate the quantities of interest to the available data.

SI Model

- The SI model we discussed before is often written

$$
\begin{aligned}
& d S / d t=-p S I \\
& d I / d t=p S I
\end{aligned}
$$

where S is the "susceptible" population - those at risk to become infected at a given time - and \mathcal{I} is the infectious population. For this model the sum $S+\mathcal{I}$ remains constant over time; we called the sum N and substituted $S=N-\mathcal{I}$ in the second equation.

- The resulting solution was

$$
\mathcal{I}(t)=\frac{N \mathcal{I}(0)}{\mathcal{I}(0)+[N-\mathcal{I}(0)] e^{-p N t}}
$$

SIR Model

- The SIR model (Kermack \& McKendrick, 1927) is

$$
\begin{aligned}
& d S / d t=-p S I \\
& d \mathcal{I} / d t=p S I-r \mathcal{I} \\
& d R / d t=r \mathcal{I}
\end{aligned}
$$

where R (for "recovered" or "removed") is the number of people who were infected but are no longer infectuous. In this case, $\mathcal{I}+R$ is the cumulative number of people infected.

- One can add a term to the first equation representing new arrivals to the susceptible population.
- There is no formula for the solutions.

Properties of Solution Families

- Each model's family of solutions has some properties that are useful for fitting parameters to data.
- A time-shifted solution is also a solution: If $\mathcal{I}(t)$ is a solution, then $\mathcal{I}(t+c)$ is also a solution (with a different initial condition). This is because the model is "autonomous" - no explicit t dependence.
- A rescaled solution is also a solution: If $\mathcal{I}(t)$ is a solution, then $a \mathcal{I}(b t)$ is a solution of the same model with different parameters.
- Given a data set and the graph of a solution $\mathcal{I}(t)$, we can try to shift and rescale the graph to fit the data.

Change of parameters for SI model solution

- We can rewrite

$$
\begin{aligned}
\mathcal{I}(t) & =\frac{N}{1+[N / \mathcal{I}(0)-1] e^{-p N t}} \\
& =\frac{N}{1+e^{-\lambda(t-\delta)}}=N g(\lambda(t-\delta))
\end{aligned}
$$

where

$$
\begin{aligned}
\lambda & =p N \\
\delta & =\log [N / \mathcal{I}(0)-1] / \lambda \\
g(x) & =1 /\left(1+e^{-x}\right)
\end{aligned}
$$

Interpretation of new parameters

- If we find parameters N, λ, δ that fit the data, we can solve for the original parameters p and $\mathcal{I}(0)$. However, the new parameters may be more interesting in their own right.
- N is the total number of people who will be infected over the outbreak, according to the model.
- δ is the time at which $N / 2$ people have been infected, and at which $d I / d t$ peaks; it is more relevant than $\mathcal{I}(0)$ to the data and to the intepretation of the model.
- λ is the rate at which the outbreak unfolds; it represents the rate per unit time a single person is infecting others early in the outbreak.

Data Fitting Problems

- Given data points $\left[t_{j}, \mathcal{I}_{j}\right]$, where \mathcal{I}_{j} is an estimate of the cumulative number of people infected at time t_{j}, we can try to minimize the sum of squared residuals

$$
E_{\mathcal{I}}(N, \lambda, \delta)=\sum_{j=1}^{J}\left[\mathcal{I}_{j}-N g\left(\lambda\left(t_{j}-\delta\right)\right)\right]^{2} .
$$

- If the data is $\left[t_{j}, y_{j}\right]$ where $t_{j}=j$ and y_{j} is the number of new diagnoses per unit time, then we can fit $d I / d t$ to the data by minimizing

$$
E_{y}(N, \lambda, \delta)=\sum_{j=1}^{J}\left[y_{j}-N \lambda g^{\prime}\left(\lambda\left(t_{j}-\delta\right)\right)\right]^{2} .
$$

Partial Solution

- We have posed nonlinear least squares problems.
- Numerical methods for optimization can yield approximate minimizers N, λ, δ.
- We can make some progress algebraically, since E is a quadratic function of N. Minimizing $E_{/}$over N yields

$$
N_{\lambda, \delta}=\sum_{j=1}^{J} \mathcal{I}_{j} g\left(\lambda\left(t_{j}-\delta\right)\right) / \sum_{j=1}^{J}\left[g\left(\lambda\left(t_{j}-\delta\right)\right)\right]^{2} .
$$

- Substituting and simplifying yields

$$
E_{\mathcal{I}}\left(N_{\lambda, \delta}, \lambda, \delta\right)=\sum_{j=1}^{J} \mathcal{I}_{j}^{2}-N_{\lambda, \delta} \sum_{j=1}^{J} \mathcal{I}_{j} g\left(\lambda\left(t_{j}-\delta\right)\right)
$$

Simple Approaches to Minimizing E

- Fix one parameter (say δ) and compute $E\left(N_{\lambda, \delta}, \lambda, \delta\right)$ for various λ; look for the value of λ that minimizes E for the chosen value of δ. Then fix λ and adjust δ to make E as small as you can. Then go back and see if you can make E smaller by adjusting λ, etc.
- Make a contour plot of $E\left(N_{\lambda, \delta}, \lambda, \delta\right)$ over a range of plausible λ and δ values. Zoom in near the apparent minimum and make another contour plot, etc.
- These approaches can be automated, and of course there are more sophisticated approaches; the latter become important when there are more parameters and/or when the function to be minimized takes a very long time to compute.

