Modeling Epidemics: Introduction, Simple Model, and Linear Least Squares

Brian Hunt University of Maryland AMSC/MATH 420, Spring 2014

First Models

- Preliminary goal: Model the spread of an infectious (contagious) illness through a population.
- Simplifying assumptions:
 - The total population N is constant in time.
 - A newly infected person becomes infectious the next day and remains infectious forever.
 - Each infectious person is equally likely (probability p) to infect each noninfectious person on a given day.
- Let *I(t)* be the number of infectious people at the start of day *t*.

Stochastic Model

- Number the people from 1 to N.
- Let x_n(t) be the infectious status (1 if infectious, 0 if not) of person n at the start of day t.
- We can simulate a possible spread of the illness with the following program ("rand"= random number):

```
for t=1:T-1

for n=1:N

let x(n,t+1)=x(n,t)

for m=1:N

if x(m,t)=1 and rand < p, then let x(n,t+1)=1

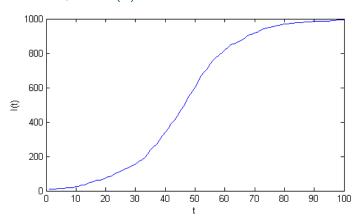
end

end

end
```

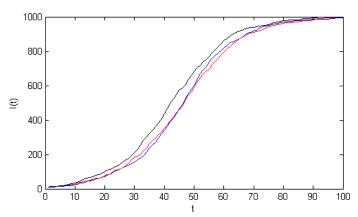
Simulation Results

- Notice that $\mathcal{I}(t) = \sum_{n=1}^{N} x_n(t)$.
- Here are the results of a simulation with $p = 10^{-4}$, N = 1000, and $\mathcal{I}(1) = 10$:



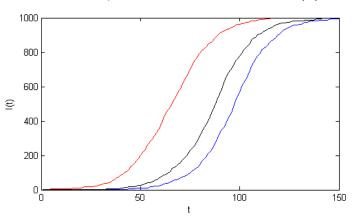
Simulation Results

• And here are the results of three different simulations with $p = 10^{-4}$, N = 1000, and $\mathcal{I}(1) = 10$:



Simulation Results

• Finally, here are the results of three different simulations with $p = 10^{-4}$, N = 1000, and $\mathcal{I}(1) = 1$:



Expected (Average) Daily Outcome

- Let's determine the expected number of people infected on a day t that starts with $\mathcal{I}(t)$ infectious people and $N \mathcal{I}(t)$ who are susceptible to infection.
- A susceptible person n has probability 1 p of NOT being infected on day t by a given infectious person m. Therefore, person n has probability $(1 p)^{\mathcal{I}(t)}$ of NOT being infected on day t.
- The expected number of people who are infected on day t is then $[1-(1-p)^{\mathcal{I}(t)}][N-\mathcal{I}(t)]$, so

$$E[I(t+1)] = I(t) + [1 - (1-p)^{I(t)}][N - I(t)]$$

Deterministic Models

If both \(\mathcal{I}(t) \) and \(N - \mathcal{I}(t) \) are large enough, it may be reasonable to approximate \(\mathcal{I}(t+1) \) by its expected value, resulting in a deterministic model:

$$\mathcal{I}(t+1) = \mathcal{I}(t) + [1 - (1-\rho)^{\mathcal{I}(t)}][N - \mathcal{I}(t)]$$
 (1)

• If $p\mathcal{I}(t)$ is small, we can approximate $(1-p)^{\mathcal{I}(t)}$ by $1-p\mathcal{I}(t)$, yielding a simpler model:

$$\mathcal{I}(t+1) = \mathcal{I}(t) + \rho \mathcal{I}(t)[N - \mathcal{I}(t)]$$
 (2)

• For these models, given $\mathcal{I}(1)$ we can compute $\mathcal{I}(2)$, $\mathcal{I}(3), \,$

Deterministic versus Stochastic

- These deterministic models are much more efficient to compute (1 calculation versus N² for the stochastic model). Their predictions may be just as reasonable as any particular simulation of the stochastic model.
- The stochastic model can give some idea of the uncertainty of its predictions via multiple simulations; the deterministic models we've written down say nothing about their uncertainty.

Continuous-Time Model

- The models we have discussed so far are called discrete-time models; time t takes on only integer values.
- We can approximate these models by continuous-time processes; approximating model (2), we get

$$\mathcal{I}'(t) = \rho \mathcal{I}(t)[N - \mathcal{I}(t)] \tag{3}$$

 We can write down an exact solution to this differential equation:

$$\mathcal{I}(t) = rac{\mathcal{N}\mathcal{I}(0)}{\mathcal{I}(0) + [\mathcal{N} - \mathcal{I}(0)]e^{-p\mathcal{N}t}}$$

Fitting the Model to Data

- The solution $\mathcal{I}(t)$ of model (3) has three parameters: N, p, and $\mathcal{I}(0)$. Suppose we know N but not the other two parameters. Given a set of data points $[t_j, \mathcal{I}_j]$, we can ask which values of p and $\mathcal{I}(0)$ best fit the data.
- [A more fundamental (but more difficult) question is whether the model can adequately fit the data at all; are there ANY parameters of the model that fit the data reasonably well?]
- We could try to minimize the sum of the squares of the residuals $\mathcal{I}_j \mathcal{I}(t_j)$. However, this would be a NONlinear least squares problem, because $\mathcal{I}(t)$ does not depend linearly on p or $\mathcal{I}(0)$.

Method 1 to use Linear Least Squares

 If the data is given at consecutive values of t, say t_j = j, then one approach is to use model (2) and write

$$\mathcal{I}(t+1) - \mathcal{I}(t) = \rho \mathcal{I}(t)[N - \mathcal{I}(t)].$$

The right-hand side is a linear function of the parameter p, and linear least squares yields the value of p that minimizes the sum of the squares of the residuals $\mathcal{I}_{j+1} - \mathcal{I}_j - p\mathcal{I}_j(N - \mathcal{I}_j)$.

• This doesn't resolve the question of which value of $\mathcal{I}(0)$ to use. If we let $t_0=0$ for the first data point, then we could let $\mathcal{I}(0)=\mathcal{I}_0$. However, this might not be the best choice of $\mathcal{I}(0)$ in order to make the residuals $\mathcal{I}_j-\mathcal{I}(t_j)$ small.

Method 2 to use Linear Least Squares

 Going back to the solution of model (3), we can make a transformation of variables so that the transformed solution does depend linearly on its parameters. First we divide both sides into N and simplify:

$$N/\mathcal{I}(t) = 1 + [N/\mathcal{I}(0) - 1]e^{-\rho Nt}$$

Next subtract 1 and take the logarithm:

$$\log[N/\mathcal{I}(t) - 1] = \log[N/\mathcal{I}(0) - 1] - pNt$$

• Let $Z(t) = \log[N/\mathcal{I}(t) - 1]$; then the model becomes Z(t) = Z(0) - pNt. This is a linear function of the parameters pN and Z(0). One can transform the data to pairs (t_j, Z_j) , use linear least squares to determine values for pN and Z(0), and then solve for p and Z(0).

Caveat

- Both ways of using linear least squares transform the model or its solution into a linear relationship between two quantities that can be computed from the data points (t_j, \mathcal{I}_j) ; in the second way, the model predicts that \mathcal{Z}_j is a linear function of t_j .
- Rather than simply accept the result of the least squares fit, one should graph the predicted relationship (e.g., Z_j versus t_j) and see if it actually looks linear. This gives some idea of how valid the model is.
- Regardless of how one determines values for p and $\mathcal{I}(0)$, one should also check directly how well the resulting $\mathcal{I}(t)$ fits the data.

