AMSC/MATH 420, Spring 2015 Modeling Epidemics: Team Homework 2b

due Tuesday April 14

To get a sense of how "type A" and "type B" interventions affect the size of an outbreak, let's first consider them in the one-group SI model:

$$
\begin{aligned}
d S / d t & =-p S \mathcal{I}-a S \\
d \mathcal{I} / d t & =p S \mathcal{I}-(a+b) \mathcal{I}
\end{aligned}
$$

As noted in class, one way to account for the total number of people infected (according to the model) is to add a "removed" population $R(t)$ with $R(0)=0$ and

$$
d R / d t=(a+b) \mathcal{I}
$$

Notice that R only counts people removed from the infectuous population, not from the susceptible population. Then $I(T)+R(T)$ is the total number of people infected up to time T. To assess the size of the entire outbreak, you should use a value of T large enough so that $S^{\prime}(T)$ is close to zero. Remember that if $a=b=0$, the total number of people infected will eventually be $N=S(0)+I(0)$. And in class, we defined the "impact" M of an intervention to be the fraction of people the intervention prevents from being infected (which is 1 minus the fraction of people who are eventually infected).

1. Choose values of N and p appropriate to one your data sets (the exact values are not so important), and set $I(0)=0.01 \mathrm{~N}$. Find the approximate value (2 significant digits is fine) of $a_{0.5}$ such that impact is 0.5 when $a=a_{0.5}$ and $b=0$; that is, $M\left(a_{0.5}, 0\right)=0.5$. Similarly, find $a_{0.75}$ for which $M\left(a_{0.75}, 0\right)=0.75$. Also, find $b_{0.5}$ and $b_{0.75}$ that achieve impacts of 0.5 and 0.75 , respectively, when $a=0$. Next suppose that you divide your resources between the two interventions in the following sense: let $a=a_{0.5} / 2$ and $b=b_{0.5} / 2$. What is impact of this "split strategy"; in particular, is it more or less than 0.5? Finally, same question for splitting between $a_{0.75}$ and $b_{0.75}$.
2. Next, consider the 2 -group model using the values of the parameters and initial conditions you found from fitting each of your data sets in the previous assignment (if your fit yielded a negative value for a parameter $p_{i j}$, set $p_{i j}=0$). The idea here is to compare type A intervention targeted primarily at group 1 versus type A intervention directed equally toward both groups. For the targeted strategy, set $b_{1}=b_{2}=0$ and $a_{1}=10 a_{2}$ and find how big you have to make $\left(a_{1}, a_{2}\right)$ to have an impact of 0.5 and to have an impact of 0.75 . Then, set $b_{1}=b_{2}=0$ and $a_{1}=a_{2}$ and see how big you have to make the a 's to get the same impacts. Finally, determine the impact of the split strategy whose parameter vector is the average the two vectors ($a_{1}, a_{2}, 0,0$) of "impact 0.5 " parameters you found, and do the same for splitting the middle between the two vectors of "impact 0.75 " parameters you found. Do these tasks for each of your team's two assigned data sets.
3. Same question but for type B interventions.
4. Summarize and interpret your results.
